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ABSTRACT

In this paper, we will construct a family of suréacfrom a given curve. These surfaces are givea lasear
combination of the components of their local cooatie frame. We give some examples about the catsthsurfaces
such as tubular surfaces and special ruled surfeas=ulating surface, rectifying surface, normaitfate and Frenet

surface.
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1. INTRODUCTION

There are a catalogue of surfaces that can berootesi on a curve in the space such as tangentopeaide
surface, normal surface, binormal surface, rectgyidevelopable surface, Darboux developable surfgamgential

Darboux developable surface and Hasimoto surfabésvare generated by evolving a regular spacescdnby
X, = X L X = &b, (1)
This is an evolution of the curve in its binormaledtion with velocity equal to its curvature arsdknown as the

vortex filament flow. Here,x(s,t) is a position vector of a point on the curvle,is the time, s is the arc-length

parameter K is the curvature oX , and b is the unit binormal vector. And the subscripiigate the differentiation with

respect to the indicated variables. The presenk wontinues the program by adding new surfacekisochtalogue. These
surfaces are obtained by evolving a regular spaoceea = r(u) in R® as it evolves over time, according to the follogvin

evolution equation:
x(u,v) =r(u)+a(u,v)t+g(uv)n+y(u,v)h,0suslL, 0svsV, 2
where r(u) is the generating curve to the surfactsis the arc length parametrization, represents the time

evolution, (t,n,b) are the tangent, normal and binormal vectorsh® durve. The functionsr (u,v), 8(u,v) and

y(u,v) are considered as marching distances of a poirit tamdbugh the timev in the directiont, N and b
respectively, and the position vectpfu) is seen as the initial location of this point. elethe values of the functions
a(u,v), B(u,v) and y(u,v) indicate, respectively, the extension-like, flexitke, and retortion-like effects, by the
point unit through the time&s  starting fromr(u). Hence, in this paper the functioas(u,v), #(u,v) and y(u,v) are

denoted as the marching-scale functions in thectiines t, N and b, respectively [1].

Evolving of the curves with respect to time haseaginterest and has been studied by many authors.
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In [2], Hasimoto showed that the motion of an isedanon-stretching thin vortex filament and the ifgnof
motions of curves in 3-spaceis described by thelimeer Schrddinger equation. Lamb [4], used the itdat

transformation to connect the motions of curvethéiomKdV and sine-Gordon equations.

Nakayama, et al [5], described the motion of cuamesstudied the connection between theintegraléugon
equations and the motion of curves in the plane &Begaces. Also Nakayama and Wadati [6], studiedntbtion plane
curves in two dimensions. R. Mukherjee and R. Bé#akan [3],used an approach different from Lamp {d map

theintegrable nonlinear partial differential eqaas of real functions to move space curves.
Recently, Nassar, et al [7-9] constructed new géooat models for motion of plane curves.

Our aim in this paper is to construct a family offaces from a given curve. This paper is outliaggollows: In
section 2, we introduce some geometric basics ovesuand surfaces. In section 3, we study geometdperties of the
surfaces generated by Eq. 2 as a special caseatutwifaces and its generator. They are displayedntegration of

Serret-Frenet and Gauss-Weingarten equations.

2 THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES

2.1 Differential Geometry of Curves

If x =x(s) is the position vector of a curv€ in space, then the unit tangeht principal normaln and

binormal b vectors vary alondC according to the wett-known [10]

t, = AN,
N, = —kt + 10, 3)
b. =-m,

where S measures arc length alofg, K is its curvature and its torsion.
Theorem 2.1 (Fundamental existence and uniquenedsebrem for space curves)

Let x(s) and 7(s) be arbitrary continuous functions @< S< b. Then there exists, except for position in
space, one and only one space curve C for wRi¢h) is the curvaturer(s) is the torsion ands is a natural parameter

along C [14].
2.2 Differential Geometry of Surfaces

We consider a surface imbedded 3+dimensional Euclidean spad&®. We denote local coordinates of the
surface by(u*,u?). The surface is specified by the position vecxdqiu®, u?) . We use the Einstein’s convention for

summation. On the surface there is a megig, ,
9, = X, X, wpv=12 (4)

Here, X, is the tangent vector to the surface,
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= X

W Tagn HELZ (5)

We denote the inverse ogw by g*’. At regular points, where the tangent vectdrst, are linearly

independent, we can define the unit normal veftbrto the surface,

:&_ (6)
|, O, |

These vectors are related by the Gauss-Weingegigations [14],

63” X, =x,I,, +NLuv,

Q)
ON 3 ”
G =-X,9"L,,.

In the above, the Christoffel's symbdl_§,/]v and the second fundamental form are defined as

1,0 d d

Co =§g”"(au/, Opo + 3 9 ™ 55 I ®

L= ox , - o
w auv )

From the compatibility conditions of Eq. 7, we tje¢ Gauss and Mainardi-Codazzi equations

L = 911((r212)u1 - (rllz)uz + rzlzrlll + I_222|_112 - rllzrllz - r122r212) + 0., ((rzzz)ul (10)
- (r122)u2 + r212r121 - r112r122)-

oL oL
alel _aTllz = L11r112 + le(r122 - r111) - L22r121 )

(11)
oL oL
au122 - au212 = L11r212 + L12(r222 - rllz) - Lzzrlzz

The Gaussian curvature, and the mean curvature,, are given by

) L LylL,,-L3
Ky =defg”L,)=—=——=—%, (12)
9 0119, "9
K, = ltr(g‘“’ LM ) — Lllg22 B 2'—12912 +2L22911 . (13)
2 2(911922 - 912)

Theorem 2.2 (Fundamental existence and uniquenedsbrem of surface}

Let 0,,,0,;, and g,, be functions ofs andt of classC* and letL,;, L, and L,, be functions ofs andt
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of classC*, all defined on an open set containifgy,, t,) such that for al(u*,u?):

* 0195~ 95 >0, 9y >0, 9, >0

* 01,015,055, Lyg, Ly, Ly, satisfy the compatibility equations (10) and (11).

Then there exists a patck = X(u*,u?) of class C* defined in a neighborhood ofs,,t,) for which
01159125950, Ly Lyp, Ly, are the first and second fundamental coefficierithie surface represented by
X = X(ul, uz) is unigue except for position in space. [14]

3 Geometric properties of the constructed surfacesased on the Frenet frame of the curver = r(u)

In what follows, we establish certain geometrioparties of the surfaces based on the Frenet fodrtie curver = r(u)
. Thus we consider a surfaces generated by therviseld /(u,v) along the curve. This generator is a linear coauiion
of the Frenet framet(n, b ). Thus we have a surfaces in the form

x(u,v) =r(u) + £(u,v). (14)
Explicitly, we obtain the motion of a point on therface that specified by

x(u,v)=r(u) + a(u,v)t+ B(u,v)n+ y(u,v)b. (15)

The tangent space t8 at an arbitrary poinP = x(u,v) of S is spanned by

X, =(+a,-pr)t+(ka+p[,-ty)n+(15+y,)b

u

X, =at+gBn+yb

\

(16)

Furthermore, the coefficients of the first fundama¢form are

0y, =(+a, =Bk’ +(ka+ B, -1y)* +(1B+y,)*,
ng zav(1+au_ﬂK)+ﬁv(Ka+ﬂu_ry)+yv(rﬁ+yu)l (17)
0, =a;+B +)

so the fundamental metric is

g =[A+a, =) +(ka+ B, —1)* +(@B+y,) lla; + 5 + )]

(18)
~la,(I+a, - Br)+ B,(ka+ B, —1y) + y, (1B +y,)]° .
The unit normal normal vector field along the agg S is given as
1
N :E[[ﬁrﬁv _yv(aK_yr+ﬁu)+ﬁvyu] t+[_ﬁ(ra+Kyv)+yv(1+au)_avyu]n
+laka, + BV(-1+B-a,)+a,(-yr - B,)]b] (19)
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Differentiating X ;, X, with respecttos andt yields

X =[-8k —kB,-k(ak —yr + B, +a,)lt
+lak —yr +ka,+k(l- Pk +a,)-1y—1(Br +y,+ B,)In
+[Br +1B8, +1(ak —yr + B,)+y,]b, (20)
Xo =[-4B,+a,lt+[ka, -1y, + B, In+[18,+),]b,
=a,t+B,nty,b.

'A%

A short calculation shows that the coefficients ofthe second fundamental form are
1 .
Lll :E[[ﬁrﬁv - yv(aK_y[-Fﬁu) +ﬁvyu][_ﬂ/( _Kﬁu _K(aK_ yr+ﬁu +auu)]
+[-Bra+ky,)+y,(1+a,)-a,y,]
x[ak —yr +ka, +k(1-Pr+a,)-1y-1(fr+y, +B,,)]

+laa, + B, (-1+ B-a,) + a,(-yr - BT +1B, +r(ak - yr+ B)+ yull
Ly =%[[ﬁfﬂv V(@K =y + B)) + By ]I=KB, +a,] @)

+[-pra+«ky,)+y,(1+a,)-ayllka, -1y, + 5,]

+laka, + B,(-1+ B-a,) +a,(-yr - BB, + Y]l
=%[[ﬁfﬂv (A =Y+ )+ By law +[-Baa+ ky,) + . (1+ a,) - a,y.16.

+laka, + B,(-1+ f-a,)+a,(-yr = L)Vl -

I_22

The set of equations (17, 21) is the main resultttdé paper. For a given marching-scale functions

a(u,v), B(u,v) and y(u,v), the surface is determined from these equationshe next subsections, we shall study

some special surfaces.
3.1 TUBULAR SURFACES
In this subsection we study tubular surfaces wharbe obtained via evolving a regular space curgpace.

The tubular surface associated to the space tusva surface swept by a family of spheres of conistadius (

radius of the tube), having the center on the guawe.

If we choose marching-scale functions such #hat 0, 8 = psinv,y = pcosv . Then from eq.(15), we have

the well known tubular surface of radiys > 0 around the curvé’, which has the following representation [10], [11]
x(u,v) = r(u) + p(sin vn + cosvb), (22)
wherea< U< b, n(u),b(u) are the principal normal and binormal vectord pfespectively.

The coefficients of the first and second fundaniefotans for this surface are given from Eqgs. (1) §21). In

case ofg = 0,4 = psinv,y = pcosv, we have:
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g, =(-1+ OKCOSV)? + p°r?,

O =pP°7,
— 2
9, =P, ) 23)
L,, =«(-1+ pkcosv)cosv+ pre,
L12 ::/7T’
L, =p.

Thus, the Gaussian and mean curvature for thesutfacesx (u,v) are computed as

— K COSV
K, = :
¢ p( - pk cosv)

1,1
K., = =(—+kp). (24)
2 p

3.2 Geometric Visualization Tubular Surfaces and & Generator

In this subsection, we display some curves antulislar surfaces. The problem of constructing csitteough

K, T analytically is very difficult. Thus we try to adih the space curves numerically. In [15], one phn the curve
numerically.

Similarly, the problem of constructing surfacesotigh g;,L; analytically is very difficult. Thus we try to
obtain the surfaces numerically. In [16], one chaak the integrability conditions and plot the aad numerically.
Now for a givenK, T, the program [15] produce the curves below, th@ftequations (23) and the program [16] produce

the surfaces below.

Plane curve with(x = seclf (u), 7 =0) Tube swd around the juxtaposed curve

EELINSEA RN I NENRRNN AR R A AN

Plane curve with(xk =0,7 =0) Tuheface around the juxtaposed curve
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%

Space curve witflxk =1,7 =1)

-

Plane curve with(xk =1,7 =0)

(0

Space curve witf{x = cosu,7 = sin u) Tube swdé around the juxtaposed curve
Space curve witl{x =1,7 = u) Tube surface around the juxtaposed curve

4. SPECIAL RULED SURFACE
A ruled surface is a surface generated by a striighmoving along a curve.

Definition 4.1. A ruled surfaceM in R?®is a surface which contains at least one 1-paranfieteily of straight lines.
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Thus a ruled surface has a parametrizatiodd — M of the form
x(u,v) = r(u)+vi(u), (25)

where r(u) is called the directrix of the surfatk (also called the base curve) ai@lu) is the director curve.

The straight lines themselves are called rulind®e Tulings of a ruled surface are asymptotic curtesthermore, the

Gaussian curvature on a ruled regular surfacedsygthere nonpositive [10].

In this subsection, we study spacial ruled surfgeeerated by linear combination pt, n}, {t, b}, {n, b},

{t,n, b}, we called these surfaces osculating surfaceifyiact surface, normal surface and Frenet surfesociated to

space curve, respectively.

We construct ruled surfaces depending on the magedtale functionsd , 3, y ) as the following
lLa=y=v,=0

2.a=6=v,y=0

3.=y=v,a =0

4. B=y=a=vV

According to these conditions, we obtain four repréations for ruled surfaces as follows

x(u,v) =r(u) +v(t(u) + n(u)). (26)
X(u,v) =r(u)+ v(t(u) + b(u)). (27)
X(u,v) =r(u)+v(n(u)+ b(u)). (28)

x(u,v) =r(u) +v(t(u) + t(u) + b(u)). (29)

These surfaces are called osculating surface fynectisurface, normal surface and Frenet surfassga@ated to

space curve respectively. The fundamental qua$1tgile, Lij can be obtained from equations (17) and (21).

4.1 Geometric Visualization of Spacial Ruled Surfaes Associated to Space Curve

In this subsection, we shall display special rutedfaces from its fundamental quantitigﬁj , Lij by using

strategy as in subsection 3.2.
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()MODEL 1
(a) Osculating Surface (b) Rgictg Surface (c) Normal Surface (d) Frenet Frame field Surface
Figure 1: Ruled Surfaces Attached to the Curv&c =1,t =1
(i)MODEL 2

(a) Osculating Surface (b) Rectifying Suefac  (c) Normal Surface (d) Frenet Frdwedd Surface

Figure 2: Ruled Surfaces Attached to the Curva = cos u;x =sin u
CONCLUSIONS

We constructed a family of surfaces from a giverveuThe surface is given as a linear combinatibthe
components of its local coordinate frame. The d¢oiefiits of the fundamental forms are derived. Tabwslurfaces and
special ruled surfaces(osculating surface, reciif\urface, normal surface and Frenet surface plateed via numerical

integration of Gauss-Weingarten equations.
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