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ABSTRACT 

In this paper, we will construct a family of surfaces from a given curve. These surfaces are given as a linear 

combination of the components of their local coordinate frame. We give some examples about the constructed surfaces 

such as tubular surfaces and special ruled surfaces (osculating surface, rectifying surface, normal surface and Frenet 

surface. 
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1. INTRODUCTION 

There are a catalogue of surfaces that can be constructed on a curve in the space such as tangent developable 

surface, normal surface, binormal surface, rectifying developable surface, Darboux developable surface, tangential 

Darboux developable surface and Hasimoto surfaces which are generated by evolving a regular space curve x  by  

,== bxxx κssst ∧                (1) 

This is an evolution of the curve in its binormal direction with velocity equal to its curvature and is known as the 

vortex filament flow. Here, ),(x ts  is a position vector of a point on the curve, t  is the time, s  is the arc-length 

parameter, κ  is the curvature of x , and b  is the unit binormal vector. And the subscripts indicate the differentiation with 

respect to the indicated variables. The present work continues the program by adding new surfaces to this catalogue. These 

surfaces are obtained by evolving a regular space curve )(r=r u  in 3R  as it evolves over time, according to the following 

evolution equation:  

,0,0,),(),(),()(=),( VvLuvuvuvuuvu ≤≤≤≤+++ bntrx γβα         (2) 

where )(r u  is the generating curve to the surfaces, u  is the arc length parametrization, v  represents the time 

evolution, ( bnt ,, ) are the tangent, normal and binormal vectors to the curve. The functions ),(),,( vuvu βα  and 

),( vuγ are considered as marching distances of a point unit through the time v  in the direction t , n  and b  

respectively, and the position vector )(r u  is seen as the initial location of this point. Here, the values of the functions 

),(),,( vuvu βα  and ),( vuγ  indicate, respectively, the extension-like, flexion-like, and retortion-like effects, by the 

point unit through the time v  starting from )(ur . Hence, in this paper the functions ),(),,( vuvu βα  and ),( vuγ  are 

denoted as the marching-scale functions in the directions t , n  and b , respectively [1]. 

Evolving of the curves with respect to time has a great interest and has been studied by many authors.  
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In [2], Hasimoto showed that the motion of an isolated non-stretching thin vortex filament and the family of 

motions of curves in 3-spaceis described by the nonlinear Schrödinger equation. Lamb [4], used the Hasimoto 

transformation to connect the motions of curves to the mKdV and sine-Gordon equations.  

Nakayama, et al [5], described the motion of curvesand studied the connection between theintegrable evolution 

equations and the motion of curves in the plane and 3-spaces. Also Nakayama and Wadati [6], studied the motion plane 

curves in two dimensions. R. Mukherjee and R. Balakrishnan [3],used an approach different from Lamb [4], to map 

theintegrable nonlinear partial differential equations of real functions to move space curves. 

Recently, Nassar, et al [7-9] constructed new geometrical models for motion of plane curves. 

Our aim in this paper is to construct a family of surfaces from a given curve. This paper is outlines as follows: In 

section 2, we introduce some geometric basics on curves and surfaces. In section 3, we study geometric properties of the 

surfaces generated by Eq. 2 as a special case tubular surfaces and its generator. They are displayed via integration of 

Serret-Frenet and Gauss-Weingarten equations. 

2 THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 

2.1 Differential Geometry of Curves 

If )(x=x s  is the position vector of a curve C  in space, then the unit tangent t , principal normal n  and 

binormal b  vectors vary along C  according to the well−known [10]  

,= nts κ  

,= btns τκ +−                (3) 

,= nbs τ−  

where s  measures arc length along C , κ  is its curvature and τ  its torsion. 

Theorem 2.1 (Fundamental existence and uniqueness theorem for space curves) 

Let )(sκ  and )(sτ  be arbitrary continuous functions on bsa ≤≤ . Then there exists, except for position in 

space, one and only one space curve C for which )(sκ  is the curvature, )(sτ  is the torsion and s  is a natural parameter 

along C [14].  

2.2 Differential Geometry of Surfaces 

We consider a surface imbedded in 3 -dimensional Euclidean space 3R . We denote local coordinates of the 

surface by ),( 21 uu . The surface is specified by the position vector ),( 21 uux . We use the Einstein’s convention for 

summation. On the surface there is a metric µνg ,  

1,2.=,= νµνµµν xxg ⋅              (4) 

Here, νx  is the tangent vector to the surface,  
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1,2.=,= µµµ u

x

∂
∂

x           (5) 

We denote the inverse of µνg  by µνg . At regular points, where the tangent vectors 21 , tt  are linearly 

independent, we can define the unit normal vector N  to the surface,  
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               (6) 

These vectors are related by the Gauss-Weingerten equations [14],  
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In the above, the Christoffel’s symbols 
λ
µνΓ  and the second fundamental form are defined as  
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 From the compatibility conditions of Eq. 7, we get the Gauss and Mainardi-Codazzi equations  
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The Gaussian curvature gκ  and the mean curvature mκ  are given by  

,==)(=
2
122211

2
122211
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Lgdetg −
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Theorem 2.2 (Fundamental existence and uniqueness theorem of surfaces)  

Let 11g , 12g  and 22g  be functions of s  and t  of class 2C  and let 11L , 12L  and 22L  be functions of s  and t  
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of class 1C , all defined on an open set containing ),( 00 ts  such that for all ),( 21 uu : 

• 0>0,>0,> 2211
2
122211 ggggg −  

• 221211221211 ,,,,, LLLggg  satisfy the compatibility equations (10) and (11).  

Then there exists a patch ),(= 21 uuxx  of class 3C  defined in a neighborhood of ),( 00 ts  for which 

221211221211 ,,,,, LLLggg  are the first and second fundamental coefficients. The surface represented by 

),(= 21 uuxx  is unique except for position in space. [14]  

3 Geometric properties of the constructed surfaces based on the Frenet frame of the curve )(= urr  

 In what follows, we establish certain geometric properties of the surfaces based on the Frenet frame of the curve )(= urr

. Thus we consider a surfaces generated by the vector field ),( vul  along the curve. This generator is a linear combination 

of the Frenet frame ( bnt ,, ). Thus we have a surfaces in the form  

).,()(=),( vuuvu l+rx             (14) 

Explicitly, we obtain the motion of a point on the surface that specified by  

.),(),(),()(=),( bntrx vuvuvuuvu γβα +++          (15) 

 The tangent space to S  at an arbitrary point ),(= vuP x  of S  is spanned by  
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Furthermore, the coefficients of the first fundamental form are  
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so the fundamental metric is  
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 The unit normal normal vector field along the surface S  is given as  
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Differentiating sx , tx  with respect to s  and t  yields  

.=
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A short calculation shows that the coefficients of the second fundamental form are
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The set of equations (17, 21) is the main result of this paper. For a given marching-scale functions 

),(),,( vuvu βα  and ),( vuγ , the surface is determined from these equations. In the next subsections, we shall study 

some special surfaces.  

3.1 TUBULAR SURFACES 

In this subsection we study tubular surfaces which can be obtained via evolving a regular space curve in space. 

The tubular surface associated to the space curver is a surface swept by a family of spheres of constant radius ( 

radius of the tube), having the center on the given curve. 

If we choose marching-scale functions such that vv cos=,sin=0,= ργρβα . Then from eq.(15), we have 

the well known tubular surface of radius 0>ρ  around the curve r , which has the following representation [10], [11]  

),cossin()(=),( bnrx vvuvu ++ ρ            (22) 

where bua ≤≤ , )(),( uu bn  are the principal normal and binormal vectors of r , respectively. 

The coefficients of the first and second fundamental forms for this surface are given from Eqs. (17) and (21). In 

case of vv cos=,sin=0,= ργρβα , we have:  
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Thus, the Gaussian and mean curvature for the tube surfaces ),( vux  are computed as  
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3.2 Geometric Visualization Tubular Surfaces and Its Generator 

In this subsection, we display some curves and its tubular surfaces. The problem of constructing curves through 

τκ ,  analytically is very difficult. Thus we try to obtain the space curves numerically. In [15], one can plot the curve 

numerically. 

Similarly, the problem of constructing surfaces through ijij Lg ,  analytically is very difficult. Thus we try to 

obtain the surfaces numerically. In [16], one can check the integrability conditions and plot the surface numerically. 

Now for a given τκ , , the program [15] produce the curves below, the set of equations (23) and the program [16] produce 

the surfaces below.  

 

Plane curve with 0)=),(=( 2 τκ usech                                           Tube surface around the juxtaposed curve 

 

Plane curve with 0)=0,=( τκ                                               Tube surface around the juxtaposed curve 
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Space curve with 1)=1,=( τκ                                                 Tube surface around the juxtaposed curve 

 

Plane curve with 0)=1,=( τκ                                              Tube surface around the juxtaposed curve 

 

Space curve with )sin=,cos=( uu τκ                                           Tube surface around the juxtaposed curve 

 

Space curve with )=1,=( uτκ                                                 Tube surface around the juxtaposed curve 

4. SPECIAL RULED SURFACE 

A ruled surface is a surface generated by a straight line moving along a curve. 

Definition 4.1. A ruled surface M  in 3R is a surface which contains at least one 1-parameter family of straight lines. 
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Thus a ruled surface has a parametrization MUx →: of the form 

),()(=),( uvuvu l+rx             (25) 

where )(ur  is called the directrix of the surfaceM  (also called the base curve) and )(ul  is the director curve. 

The straight lines themselves are called rulings. The rulings of a ruled surface are asymptotic curves. Furthermore, the 

Gaussian curvature on a ruled regular surface is everywhere nonpositive [10]. 

In this subsection, we study spacial ruled surface generated by linear combination of },{ nt , },{ bt , },{ bn , 

},,{ bnt , we called these surfaces osculating surface, rectifying surface, normal surface and Frenet surface associated to 

space curve, respectively. 

We construct ruled surfaces depending on the marching-scale functions ( γβα ,, ) as the following  

1. 0=,== βγα v  

2. 0=,== γβα v  

3. 0=,== αγβ v  

4. v=== αγβ  

According to these conditions, we obtain four representations for ruled surfaces as follows  

)).()(()(=),( uuvuvu ntrx ++  (26) 

)).()(()(=),( uuvuvu btrx ++  (27) 

)).()(()(=),( uuvuvu bnrx ++  (28) 

)).()()(()(=),( uuuvuvu bttrx +++  (29) 

These surfaces are called osculating surface, rectifying surface, normal surface and Frenet surface, associated to 

space curve respectively. The fundamental quantities ijij Lg ,  can be obtained from equations (17) and (21). 

4.1 Geometric Visualization of Spacial Ruled Surfaces Associated to Space Curve 

In this subsection, we shall display special ruled surfaces from its fundamental quantities ijij Lg ,  by using 

strategy as in subsection 3.2.  
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(i)MODEL 1 

 

            (a) Osculating Surface         (b) Rectifying Surface           (c) Normal Surface          (d) Frenet Frame field Surface 

Figure 1: Ruled Surfaces Attached to the Curve κ = 1, τ = 1 

(ii)MODEL 2  

 

           (a) Osculating Surface        (b) Rectifying Surface       (c) Normal Surface         (d) Frenet Frame Field Surface 

Figure 2: Ruled Surfaces Attached to the Curve κ = cos u, τ = sin u 

CONCLUSIONS 

We constructed a family of surfaces from a given curve. The surface is given as a linear combination of the 

components of its local coordinate frame. The coefficients of the fundamental forms are derived. Tubular surfaces and 

special ruled surfaces(osculating surface, rectifying surface, normal surface and Frenet surface ) are plotted via numerical 

integration of Gauss-Weingarten equations. 
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